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We consider deflections of a thin rectangular elastic plate that is submerged within a Newtonian fluid. The
plate is clamped along one edge and supported horizontally over a plane horizontal wall. We consider both
external driving, where the clamped edge is vibrated vertically at high frequencies, and thermal driving, where
the plate fluctuates under Brownian motion. In both cases, the amplitude of oscillation is assumed sufficiently
small that the resulting flow has little convective inertia, although the oscillation frequency is sufficiently high
to generate substantial unsteady inertia in the flow, a common scenario in many nano- and microdevices. We
exploit the plate’s thinness to develop an integral-equation representation for the three-dimensional flow �a
so-called thin-plate theory� which offers considerable computational savings over a full boundary-integral
formulation. Limiting cases of high oscillation frequencies and small wall-plate separation distances are stud-
ied separately, leading to further simplified descriptions for the hydrodynamics. We validate these reduced
integral representations against full boundary-integral computations, and identify the parameter ranges over
which these simplified formulations are valid. Addressing the full flow-structure interaction, we also examine
the limits of simpler two-dimensional hydrodynamic models. We compare the responses of a narrow plate
under two- and three-dimensional hydrodynamic loading, and report differences in the frequency response
curves that occur when the plate operates in water, in contrast to the excellent agreement observed in air.
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I. INTRODUCTION

Understanding the way in which fluid damping can influ-
ence the response of a microscopic flexible plate to external
and thermal driving provides important insights into the
functioning of a host of microdevices. Although plate dimen-
sions and deflection amplitudes within such devices are often
sufficiently small that convective inertia in the flow can be
neglected, the high speeds reached by many microdevice
components often result in highly unsteady flows. Advances
in microtechnologies are therefore driving an urgent need to
understand better these unsteady low-Reynolds-number
flows, which have been studied since the early work by
Stokes �1� on the two-dimensional flow driven by an oscil-
lating, infinite-length circular cylinder.

Some of the most advanced elastohydrodynamical model-
ing has been conducted with the atomic-force microscope
�AFM� in mind, where the forced oscillations of a narrow
microcantilever are used to map the surface topology of a
biological specimen within a fluid environment �2�. Impor-
tant contributions in this respect have been made by coupling
classical results for two-dimensional flow around the canti-
lever to a one-dimensional Euler-Bernoulli beam description
for the elastic behavior �3–5�. Other examples include single-
molecule biosensors, which measure the response of a nano-
cantilever as molecules bind to it �6�, as well as an increasing
assortment of microelectromechanical systems.

In general, however, microdevices contain plates that are
finite in length and can bend significantly across their width

�in full-contact-mode atomic-force microscopy, for example,
spanwise deflections are used to determine specimen surface
properties; see �7��. In the absence of hydrodynamic effects,
a number of workers �8–10� have computed the elastic re-
sponse of finite-width plates with realistic AFM cantilever
shapes. More recent work on the hydrodynamical aspects has
used slender-body theory to examine the three-dimensional
fluid effects near the ends of a finite-length cantilever that
has negligible width �11�.

The precise details of a flow within and around a microde-
vice will, of course, depend upon the exact configuration of
the device in question, which will vary considerably across
different technologies. The AFM cantilever, for instance, is
often attached to the end of a thin chip �often alongside sev-
eral other cantilevers�, whereas other microdevices may have
their elastic plates embedded into solid vertical surfaces. It is
not our intention here to faithfully reproduce the configura-
tion of any one specific microdevice, but rather to develop
useful computational techniques and to illustrate the poten-
tial limitations of certain modeling assumptions, which we
hope will find broad application.

Here we present a study of the coupled fluid-solid behav-
ior of an elastic rectangular plate that is clamped at one end
�although details of the support structure are omitted� and
submerged within a Newtonian fluid. This plate oscillates at
high frequencies but with low amplitudes, above a plane
wall. This is achieved by deriving an integral formulation for
the oscillatory Stokes flow around a thin three-dimensional
body �so-called thin-plate theory� that offers considerable
computational savings over a full three-dimensional
boundary-integral method. On a standard desktop PC, and in
the purely hydrodynamic regime where the plate is assumed
rigid, thin-plate theory requires just 1% of the computational*rj.clarke@auckland.ac.nz
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time needed by a full boundary-integral formulation. When
the plate is nonrigid, thin-plate theory allows computations
to be made on a conventional desktop PC, which would oth-
erwise be prohibitively expensive using boundary-integral
methods.

The limiting case of a rigid plate is studied initially, in
order to validate our simplified flow formulation and extend
earlier work on wall effects in two-dimensional oscillatory
Stokes flow �12� into three dimensions. This is followed by a
general treatment of the elastohydrodynamics, which allows
us to predict the frequency response of an externally or ther-
mally driven, fluid-damped elastic plate. We identify occa-
sions when the flow in such models may be considered to be
essentially two dimensional and, importantly, occasions
where a three-dimensional flow model may be necessary.

We begin in Sec. II by introducing the elastic-plate equa-
tions governing the solid body �Sec. II A� and the unsteady
Stokes equations governing the flow �Sec. II B� and then
describe how these couple together. Circumstances under
which simplifications to the model can be made are identified
in Sec. III. We describe the numerical approach in Sec. IV,
and results are then presented in Sec. V. Overall conclusions
for the work are summarized in Sec. VI.

II. FORMULATION

We consider a thin elastic rectangular plate of length L*,
width 2R*, and uniform thickness 2D* �2D*�R* ,L*� im-
mersed in a Newtonian fluid of density � and kinematic vis-
cosity �. The plate’s plane of vertical symmetry �param-
etrized by coordinates �* and �*� lies at a distance H* above
a horizontal wall; the wall is located at x

3
*=0 with respect to

Cartesian coordinates �x
1
* ,x

2
* ,x

3
*� �see Fig. 1�. The plate has

uniform density �p, Young’s modulus E �O�1012 g cm−1 s−2�
for a silicon nitride AFM cantilever, or equivalently

O �100 GPa��, Poisson ratio �p �the ratio of transverse over
compressive strain, which is approximately 0.3 for AFM
cantilevers�, and hence a flexural rigidity D=E�2D�*3 /12�1
−�p

2�. The plate oscillates in a vertical direction with fre-
quency �* and amplitude A*�2D*, causing vertical deflec-
tions W*��* ,�* , t*� of the plate’s plane of vertical symmetry.
Although in most applications torsional motions �i.e., mo-
tions in the x

2
*-x

3
* plane� of the plate will be subdominant,

and of less interest than the vertical displacements, such
twisting behavior is decoupled from motions in the x

3
* direc-

tion, due to the linearity of the governing equations, and can
be included through straightforward modifications to the
model �although we do not do so in this study, but see �13��.

In what follows we scale lengths on L*, oscillation fre-
quency �* on the natural frequency �0��D /�p�2D*��L*�4,
time t* on �0

−1, deflections on A*, flow speeds U* on A*�*,
and pressure on ��U* /L* and take ���H*−D*� /L* to be
the dimensionless separation distance between the bottom of
the plate and the wall. The nondimensional plate width and
thickness are then denoted by 2R and 2D, respectively. The
fluid loading per unit area F* is scaled on A*�*� /L*.

A. Solid-body dynamics

Expressing strains in terms of plate curvature and assum-
ing a Hookean stress-strain relationship, a vertical force bal-
ance and moment equilibria lead to the dimensional linear
plate equation �14�

D�*4W* + �p�2D*�
�2W*

�t*2
= F* �1�

��*2��2 /��*2+�2 /��*2� which is applicable here due to the
small nature of the deformation amplitudes. Looking for os-
cillatory solutions W*��* ,�* , t*�=Re�A*w��* ,�*�ei�*t*� un-
der the above nondimensionalization, Eq. �1� becomes

�4w − �2w = M	F , �2�

where M �� /�0�L*�2 and 	=�L* /�p�2D*� �see Table I in
Sec. V B below for typical operating values of 	 and M in
both air and water�.

Driving the plate externally involves prescribing the fol-
lowing boundary conditions at �=0:

w�0,�� = 1,
�w

��
�0,�� = 0 for − R 
 � 
 R; �3a�

and invoking free-edge conditions along the other sides �see
Eq. �12� for a justification as to why hydrodynamic stresses
on these sides can be neglected when the plate is thin�

�2w

��2 + �p
�2w

��2 =
�3w

��3 + �2 − �p�
�3w

����2 = 0

on � = 1, − R 
 � 
 R , �3b�

�2w

��2 + �p
�2w

��2 =
�3w

��3 + �2 − �p�
�3w

��2��
= 0

on � = � R, 0 
 � 
 1. �3c�

FIG. 1. An elastic plate of length L*, width 2R*, and thickness
2D* oscillates with frequency �* and amplitude A* normal to a
plane wall �x

3
*=0�. The plate’s plane of vertical symmetry, param-

etrized by ��*,�*�, lies a distance H* from the wall. The unde-
flected plate surface is denoted S and C is the perimeter of the
plate’s cross section in the x

2
*-x

3
* plane.
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The behavior under thermal driving, however, is deter-
mined by computing the response of the plate following the
application of a point torque to the plate tip, in accordance
with the fluctuation-dissipation theorem approach �5,6�. Un-
der these circumstances the boundary conditions become

w = 0,
�w

��
= 0 on � = 0, − R 
 � 
 R , �4a�

�2w

��2 + �p
�2w

��2 = 1 on � = 1, − R 
 � 
 R , �4b�

�3w

��3 + �2 − �p�
�3w

����2 = 0 on � = 1, − R 
 � 
 R ,

�4c�

�2w

��2 + �p
�2w

��2 =
�3w

��3 + �2 − �p�
�3w

��2��
= 0

on � = � R, 0 
 � 
 1. �4d�

For computational purposes we decompose the fourth-
order equation �2� into a pair of coupled second-order equa-
tions

�2v − �2w = M	F , �5a�

v = �2w �5b�

�where −v is the average curvature, which can be shown to
be invariant under rotations of the coordinate system in the
x1-x2 plane �14�� with the externally driven boundary condi-
tions along the non clamped edges �3b� and �3c� now becom-
ing

�pv + �1 − �p�
�2w

��2 = �2 − �p�
�v
��

+ ��p − 1�
�3w

��3 = 0

on � = 1, − R 
 � 
 R , �6a�

�pv + �1 − �p�
�2w

��2 = �2 − �p�
�v
��

+ ��p − 1�
�3w

��3 = 0

on � = � R, 0 
 � 
 1, �6b�

whereas the thermal boundary conditions along the non-
clamped edges �Eqs. �4b�–�4d�� become

�pv + �1 − �p�
�2w

��2 = 1 on � = 1, − R 
 � 
 R , �7a�

�2 − �p�
�v
��

+ ��p − 1�
�3w

��3 = 0 on � = 1, − R 
 � 
 R ,

�7b�

�pv + �1 − �p�
�2w

��2 = �2 − �p�
�v
��

+ ��p − 1�
�3w

��3 = 0

on � = � R, 0 
 � 
 1. �7c�

In general, the hydrodynamic loading F will be a func-
tional of the deflection w. The assumption of small-

amplitude deflections, however, considerably simplifies the
nature of the elastohydrodynamic coupling.

B. Flow dynamics

The amplitude constraint A*�2D* allows us to consider
low-Reynolds-number unsteady flow and to linearize the
boundary conditions. Hence, for hydrodynamical purposes,
we need only consider the rigid plate surface S �as depicted
in Fig. 1�. We look for flows of the form Re�U*uei�*t*�
which, under nondimensionalization, are governed by the os-
cillatory Stokes equations �15�

i�2u = − �p + �2u, � · u = 0, �8�

where u and p are the fluid velocity and pressure, respec-
tively, and ��L*��* /�=M−1/2�1/2. Equations �8� must be
solved subject to the boundary conditions

�u�S = i�w��,��x̂3, u�x1,x2,0� = 0 ,

u → 0 as �x� → 
 for x3 � 0, �9�

where x̂3 is the unit normal in the x3 direction, i.e., the ve-
locity at a point on the plate’s surface is proportional to the
deflection of its midplane at the location �� ,��, the vertical
projection of the surface point onto the midplane. However, a
note of caution is in order. In the case of extremely small gap
thicknesses or in the presence of rarified gases, the above
boundary conditions may need to be modified to take ac-
count of failings in the no-slip condition in these regimes
�12,16�.

The fluid loading on the plate F is given by

F��,�;�,�� = �n̂ · � · n̂�S = �n̂ · �− pI + �u + �uT� · n̂�S,

�10�

where � is the Newtonian stress tensor for the fluid.
Oscillatory Stokes flow can be expressed in boundary-

integral form as �17�

ui�Y� =
1

8�
�

S
gj�y�S̄ij�y,Y;�,��dA ,

gj�y� = � jkn̂k − i�2ukykn̂j �11�

�summing over repeated subscripts 1
 i , j ,k
3� where y
�S and Y is, in general, any point in the fluid domain. By
allowing Y�S, where the flow velocity is known via the
boundary conditions, we obtain an integral equation for the

unknown function g. S̄ij is the symmetrical oscillatory
Stokeslet which accounts for the presence of a plane wall, as
derived by Pozrikidis �18� �see Appendix A�. Since

�g3�SU
+ �g3�SL

= ���3kn̂k − i�2�iw�y3n̂3��SU
+ ���3kn̂k − i�2�iw�y3n̂3��SL

= ��3kn̂k�SU
+ ��3kn̂k�SL

+ �2w��� + 2D� − ��

= F + 2D�2w , �12�

determining the additive contribution to g3 from the upper

THREE-DIMENSIONAL ELASTOHYDRODYNAMICS OF A … PHYSICAL REVIEW E 78, 056310 �2008�

056310-3



�SU� and lower �SL� horizontal surfaces of the plate provides
the hydrodynamic loading on these surfaces up to a known
constant 2D�2w��2. This known constant is negligible
when ��O�1� since 2D�R�1 and is subdominant to the
O��2� contributions from F���3kn̂k�SU

+ ��3kn̂k�SL
�specifi-

cally the added mass� when ��1, and hence can be ne-
glected.

This additive contribution of stresses on the horizontal
surfaces can be approximated by exploiting the thinness of
the plate �D�R� to expand the surface distribution of
Stokeslets in Eq. �11� about the midplane of the plate at x3
=�+D. This allows us to approximate the flow using just a
single plane of three-dimensional image Stokeslets over the
plate’s midplane �rather than a full surface covering� as

ui��,�� =
1

8�
�

−R

R �
0

1

S̄ij�x,X;�,��f j��,��d� d� , �13�

where x=�x̂1+�x̂2+ ��+D�x̂3 is a point in the midplane and
X=�x̂1+�x̂2+ ��+2D�x̂3 is a point on the upper surface.
Therefore, from the above discussion, we expect f3= �g3�SU
+ �g3�SL

+O�D�2�.
We note from Appendix A that many of the terms involv-

ing y and Y contained within S̄ij in Eq. �11� are premultiplied
by �. Therefore, to expand about the midplane, we require
�D�1. In other words, the �−1 distances over which vortic-
ity diffuses during each oscillation should be much greater
than the plate’s thickness 2D for the present approximation
to be valid.

Consequently, the flows around the 2D-thick edges of the
plate are quasisteady and dominated by O�s�−�0� singularities
where horizontal and vertical surfaces join �19�. The variable
s� here is a measure of the distance along the edge to the
nearest corner and �0	0.5. The drag contribution from the
sides is therefore O�D−�0+1�=o�1� and hence can be ne-
glected.

We shall refer to Eq. �13� as the three-dimensional thin-
plate theory �3D TPT� approximation. It is anticipated that f3
will provide the additive hydrodynamic stresses from the up-
per and lower surfaces, and hence the dominant hydrody-
namic loading on the plate. Therefore, Eq. �13� presents a
more efficient and appealing method for computing hydro-
dynamic damping than the full three-dimensional boundary-
integral treatment Eq. �11�. Furthermore, since the linear
elasticity equations are derived in the asymptotic limit of
zero thickness, 3D TPT is the consistent formulation for the
hydrodynamic loading.

Under certain circumstances, namely, at high frequencies
of oscillation or small plate-wall separation distances, we are
able to simplify the flow formulation still further, in ways
that we discuss in Sec. III.

III. LIMITING CASES: REDUCTION OF
DIMENSIONALITY VIA SCREENING EFFECTS

In general, the flows generated by an oscillating plate will
be three dimensional due to the generation of flows around
the edges of the plate. Sufficiently close to the edges these
flows will be quasisteady in nature, although for oscillatory

flows it is well known that the range of viscous effects scale
with the inverse of the oscillation frequency �for example,
see �20,21��. Hence, at high frequencies three-dimensional
viscous effects are confined to thin O��−1� Stokes layers
about the edges, and the flow outside of these layers is
largely inviscid. However, since these inviscid flows are con-
fined to distances comparable with the relevant characteristic
length scale, the three-dimensional edge flows generated by
short edges have limited range. This screening of three-
dimensional flows at large frequencies was observed with
slender oscillating rods �11�, where three-dimensional vis-
cous and invisicd flows generated at the ends of the rod were
limited to O��−1� and O�R0� distances, respectively �where
R0�1 is the ratio of the rod’s radius to its length�. For the
case of a plate, we therefore expect frequency screening to
occur when max�R ,�−1��min�1,��. Decreasing the wall
separation distance provides a second mechanism for screen-
ing three-dimensional flow effects �11�, and occurs when �
�min�1,R�. We now consider these two limits in turn.

A. Hydrodynamic frequency screening
[max(R ,�−1)™min(1 ,�)]

When the plate is much longer than it is wide �D�R
�1� and the range over which vorticity can diffuse is small
with respect to plate length ��−1�1�, we expect three-
dimensionality in the flow to be confined to the plate ends
��=0,1� even in the effective absence of a wall ��−1��, i.e.,
when the separation distance is much greater than the thick-
ness of the Stokes layers present on both the wall and plate
surface�.

The locally two-dimensional flow along the length of the
plate can also be described through a boundary-integral for-
mulation analogous to �11� that uses a midplane distribution

of two-dimensional oscillatory Stokeslets S̄ij� which take ac-
count of the wall’s presence �as computed by Chu and Kim
�22�; see Appendix B�. In this limit it proves useful to rescale
lengths on the plate width rather than plate length, x�
�x /R, and to rescale the frequency parameter in a similar
manner with ���R�. The two-dimensional boundary-
integral representation for the flow then becomes �23�

ui��Y�� =
1

4�
�

C
gj��y��S̄ij� �y�,Y�;��,���dA ,

gj��y�� = � jk� n̂k − i��2uk�yk�n̂j �14�

�summing over repeated subscripts 1
 i , j ,k
2� where y�
�C �the perimeter of the plate’s length�, u� refers to the flow
in the local �x2� ,x3�� plane, Y� is a point in this same plane
�but not within the body of the plate�, and �� represents the
corresponding stress tensor for the two-dimensional flow. As
in the three-dimensional case, we expect the overall hydro-
dynamic load on the two-dimensional plate F� to be domi-
nated by the fluid stresses on the upper and lower surfaces,

F� = ��2k� n̂k�CU
+ ��2k� n̂k�CL

, �15�

where CU and CL denote the upper and lower surfaces of C,
respectively.
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As before, when the thickness of a two-dimensional plate
is small compared with its other dimensions, we can expand
the surface distribution of Stokeslets in the boundary-integral
expression about the plate’s midplane �x3�=��+D��, leading
to a two-dimensional TPT approximation

ui����� = −
1

4�
�

−1

1

S̄ij� �x�,X�;��,���f j�����d��, �16�

where f� denotes a distribution of two-dimensional Stokes-
lets which, as in the three-dimensional case, is expected to
approximate F� accurately, from which the overall load on
the plate can be computed. Here, x�=��x̂2+ ���+D��x̂3 is a
point in the midplane in the �x2 ,x3� plane and X�=��x̂2
+ ���+2D��x̂3 is a point on the upper surface.

Unlike the slender-body-flow approximation for flow
around a body with rodlike geometry �11�, in general no
leading-order local force–velocity relationship exists in the
2D TPT formulation �16� upon which an asymptotic expan-
sion can be constructed. However, when the frequency of
oscillation is high ����1� viscous effects become localized,
which can lead to significant simplifications. This can be
seen by splitting the two-dimensional oscillatory free-space
Stokeslet Sij� �see Appendix B� into its inviscid and viscous
contributions,

ui����� =
1

4�
�

−1

1

Sij� �x̂�;���f j�����d��

=
1

2�����2�
−1

1

Qij�x̂��f j�����d��

−
1

2�
�

−1

1 
K0���r̂����ij +
x̂i�x̂j�

r̂�2 �
−

K1���r̂��
r̂�

��ij −
2x̂i�x̂j�

r̂�2 �
 f j�����d��, �17�

where x̂�=x�−X�, r�= �x̂��, and ��=�i��. The second integral
contains viscous terms, while the first integral contains a
distribution of two-dimensional dipoles

Qij �
�ij

r̂�2 −
2x̂i�x̂j�

r̂�4 . �18�

The modified Bessel functions K0�z� and K1�z� in the viscous
expression exhibit exponential decay for �z��1 and so we
expect a non-negligible viscous contribution to the second
integral over only an O��−1� interval about ��=��. This sug-
gests the rescaling ��=��+ ���−1���, in which case

ui����� =
1

2�����2�
−1

1

Qij�x̂��f j�����d�� −
1

2�
Iij f j�����

+ O���−1� , �19a�

where

Iij = �
−���1+���

���1−��� 
K0��ir����ij +
xi�xj�

r�2 �
−

K1��ir��
�ir�

��ij −
2xi�xj�

r�2 �
d��, �19b�

and x2�=��, x3�=D�, and r�2=��2+��2. Hence, in this high-
frequency limit, the leading-order inviscid flow depends
upon the full width of the plate and requires a distribution of
dipoles along its midplane, whereas viscous contributions are
local to a given point. Although Eq. �19a� must be solved
numerically, by discretizing into elements along the mid-
plane and assuming the f j� are constant on each element, this
approach still offers substantial computational savings, since
we can integrate the dipoles analytically over each element,
thereby dispensing with the greatest overhead, numerical
quadrature. We shall refer to this limit as the two-
dimensional high-frequency thin-plate-theory �2D HFTPT�
approximation. In Sec. V we shall compare the plate deflec-
tions calculated using this two-dimensional hydrodynamic
loading against those computed using full three-dimensional
flows.

B. Hydrodynamic wall screening [�™min(1 ,R), ��=O(1)]

When the wall-plate separation distance is of similar size
to the thin oscillatory Stokes layers on the solid surfaces
����−1� and smaller than the smallest horizontal plate di-
mensions ���min�1,R��, we expect the dominant drag con-
tribution to come from an unsteady lubrication region be-
tween the wall and the plate. The flow in this gap can be
examined by rescaling distances, velocities, and pressure as
follows:

x1 = x̃1, x2 = x̃2, x3 = �x̃3,

u1 = �−1ũ1, u2 = �−1ũ2, u3 = ũ3, p = �−3p̃ . �20�

The leading-order flow is then governed by �dropping tildes�

i�2u1 = −
�p

�x1
+

�2u1

�x3
2 , �21�

i�2u2 = −
�p

�x2
+

�2u2

�x3
2 ,

�p

�x3
= 0, � · u = 0, �22�

where �=��, subject to the no-slip and no-penetration con-
ditions

u�x1,x2,0� = 0 , �23a�

u�x1,x2,1� = iw�x1,x2�x̂3. �23b�

This is solved by

u1x̂1 + u2x̂2 = Ae�i�x3 + Be−�i�x3 −
1

i�2�sp , �24a�

u3 = �s · B
e−�i�x3

�i�
− �s · A

e�i�x3

�i�
+ x3

�s
2p

i�2 + C , �24b�

where �s= �� /�x1 ,� /�x2� and
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A =
�sp

2i�2�1 − e−�i�

sinh �i�
� , �24c�

B =
�sp

2i�2� e�i� − 1

sinh �i�
�, C = �s

2p� 1 − cosh �i�

i3/2�3 sinh �i�
� .

�24d�

Imposing the no-penetration condition �23b� then provides a
Poisson equation for the pressure,

�s
2p = ik0���w�x1,x2� , �25a�

k0��� =
��i��3 sinh �i�

�2 − 2 cosh �i� + �i� sinh �i��
, �25b�

where we specify the pressure at the plate edges to be zero,
to leading order in �. In the quasisteady limit �→0, where
vorticity diffuses over distances much greater than the gap
thickness during one oscillation, k0���→12 in agreement
with the quasisteady results of Kim et al. �24�. Conversely, in
the limit �→
, which corresponds to the situation where the
O��−1� Stokes layers are much thinner than the plate-wall
gap, k0���→ i�. Hence, by Eqs. �20� and �25�, p=O��2�−1�,
which is consistent with the results of Clarke et al. �12�.

Determining the dynamics of the plate in this small-�
limit therefore involves solving Poisson’s equation for the
pressure �25� alongside the elasticity equations �2�:

�4w − �2w = M	�−3p , �26a�

�s
2p = ik0���w . �26b�

We shall describe the simplifications that this brings to the
numerical computation in Sec. IV.

Moreover, when the plate is narrow in this small-
separation limit ���R�1� we can find the leading-order
deflections and pressure asymptotically, by exploiting the
fact that narrow beams show very little transverse bending,
i.e., w�� ,��=w���. Rescaling �=R�̃, the pressure equation
�25� takes the form

�2p

��̃2 + R2�2p

��2 = iR2k0���w��� , �27�

subject to p�� , �1�=0. Expanding pressure in powers of R
we obtain

p = p�0� + Rp�1� + R2p�2� + O�R3� , �28�

where

p�0� = p�1� = 0, p�2� =
i

2
k0���w�0������̃2 − 1� . �29�

We should, however, note that the two-dimensional pres-
sure solution p�2� given by Eq. �29� is unable to satisfy both
zero pressure and nonzero deflection conditions at �=0 and 1
simultaneously. We therefore consider the clamped-end re-

gion where �=O�R� by rescaling �=R�̃, which leaves us
needing to solve

�2p�2�

��̃2 +
�2p�2�

��̃2
= ik0���w�0� �30a�

for the nontrivial pressure contribution, subject to the bound-
ary conditions

p�2��0,�̃� = p�1���̃,0� = 0, �30b�

as well as tending toward the two-dimensional solution away
from the edges

p�2���̃,�̃� →
i

2
k0���w�0���̃2 − 1� as �̃ → 
 . �30c�

This Poisson equation can be solved by posing the inhomo-
geneous solution

pI
�2� =

i

2
k0���w�0���̃2 − 1� , �31�

which matches the outer solution as �̃→
, and then calcu-
lating the harmonic function which cancels the nonzero val-

ues of the pressure at �̃=0 and decays at large �̃,

�2ph
�2� = 0,

ph
�2��0,�̃� =

i

2
k0���w�0��1 − �̃2� ,

ph
�2���̃,1� = 0, ph

�2� → 0 as �̃ → 
 . �32�

Separation of variables then gives us the clamped-end-region
pressure near �=0,

p��̃,�̃� = ik0���w�0�� ��̃2 − 1�
2

+
16

�3 �
k=1

k odd



sin�k��1 + �̃�/2�e−k��̃/2

k3 � . �33�

A similar analysis gives the end-region pressure near �=1
and hence the pressure can be expressed as the following
composite expansion:

p�2���,�� =
i

2
k0���w�����2 − R2�/R2

+
16ik0���w�0�

�3 �
k=1

k odd



sin�k��R + ��/2R�e−k��/2R

k3

+
16ik0���w�1�

�3 �
k=1

k odd



sin�k��R + ��/2R�e−k��1−��/2R

k3 .

�34�

In Sec. V A we compare hydrodynamic loadings obtained
using this composite expression with those computed using
3D TPT, in the small-separation limit.
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IV. NUMERICAL SCHEME

We solve the coupled 3D TPT equation �13� and plate
equations �5� numerically by discretizing the plate into N
�M equally sized panels, in the � and � directions, respec-
tively, setting �m=m /N and �k=kR /M. We assume that
the Stokeslet distribution f is uniform over each panel. The

elastohydrodynamics can then be approximated by the �5N
�M�� �5N�M� system

�I�YI

FI
� + �0Y0 = 0 , �35�

where

YI = „w��1,�1�, . . . ,w��N,�1�, . . . ,w��1,�M�, . . . ,w��N,�M�,v��1,�1�, . . . ,v��N,�1�, . . . ,v��1,�M�, . . . ,v��N,�M�… �36�

contains values of w and v at internal points on the plate,

FI = „f1��1,�1�, f2��1,�1�, f3��1,�1�, . . . ,

f1��N,�1�, f2��N,�1�, f3��N,�1�, . . . , f1��1,�M�, f2��1,�M�, f3��1,�M�, . . . , f1��N,�M�, f2��N,�M�, f3��N,�M�… �37�

contains internal values of f, while

Y0 = „w�1,�1�, . . . ,w�1,�M�,w��1,1�, . . . ,w��N,1�,w��1,− 1�, . . . ,w��N,− 1�,v�1,�1�, . . . ,v�1,�M�,

v��1,1�, . . . ,v��N,1�,v��1,− 1�, . . . ,v��N,− 1�,v�0,�1�, . . . ,v�0,�M�… �38�

consists of the boundary values of w and v �where the matrix
�0 augments Y0 with zeros in the necessary places�. The
values in Y0 are determined by the boundary conditions
given in �6�, which produce a set of �2N+3M� equations
relating internal points to boundary values

M1YI + M2Y0 = B , �39�

where M1 ,M2 contain the finite-difference approximations to
conditions on deflection derivatives in �6� �using three-point
uniformly spaced central differencing� and B contains the
relevant boundary conditions. Hence

Y0 = M2
−1B − M2

−1M1YI, �40�

giving, on substitution into �35�,

�I�YI

FI
� − �0M2

−1M1YI + �0M2
−1B = 0 , �41�

where

�I = �E J1

J2 G
� . �42�

Here

E = � L − I

− �2I L
� �43�

is the discretized elasticity operator in Eq. �5� and G is the
discretized hydrodynamic operator in Eq. �13�, whose entries
are defined by

G�,� =
1

8�
�

�m−1

�m �
�k−1

�k

S̄ij�xM,XM ;�,��d� d� , �44�

where the values of 1
�, �
3N�M determine the force
and velocity component indices 1
 i, j
3 through the
equalities

� = 3�k� − 1�N + 3�m� − 1� + i ,

� = 3�k − 1�N + 3�m − 1� + j , �45�

where 1
k, k�
M, 1
m, m�
N, and �k� ,m�� and �k ,m�
index the panels on which velocity and force, respectively,
are being evaluated. L is the finite-difference approximation
to the Laplacian, I is the �N�M�� �N�M� identity matrix,
J1 is the �N�M�� �N�M� zero matrix other than −M	
values in �k ,3�k−1�+3�-indexed entries, as is J2 except for
−i values in �3�k�−1�+3,k��-indexed entries �1
k ,k�
N
�M�. Solving this linear system by Gaussian elimination
provides the plate deflection and the Stokeslet distribution of
f over the plate. Convergence is verified by solving on 30
�30 and 50�50 meshes, to ensure grid independence.

Computing the rigid-plate hydrodynamics using 3D TPT
amounts to solving the �3N�M�� �3N�M� system

iW = GFI, �46�

where W= (0,0 ,w��1 ,�1� , . . . ,0 ,0 ,w��N ,�1� , . . . ,0 ,0 ,
w��1 ,�M� , . . . ,0 ,0 ,w��N ,�M�). An analogous boundary-
element method �BEM� scheme is constructed for flow com-
putations based on the three-dimensional boundary-integral
formulation �11�, but here the system is �3N�M +3N�K
+3K�M�2 in size as the ends ��=0,1� and sides ��= �R�
of the plate must also be covered by N�K and M �K pan-
els, respectively. Coupling the 3D BEM with the elastic dy-
namics therefore requires solving a �5� �N�M +N�K+M
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�K��2-sized linear system, compared with the �5N�M�
� �5N�M� system generated when using 3D TPT, clearly
demonstrating the computational savings available.

Small wall-separation limit (�È�−1™1)

The most time-consuming element of Eq. �35� is evalua-
tion of the hydrodynamic matrix G in �I. In the small-wall-
separation limit, however, the fluid loading can be approxi-
mated using a lubrication theory assumption �Sec. III B�.
Under these circumstances the discretized equation �41� sim-
plifies to the �2N�M�� �2N�M� system

�I��YI

P
� − �0M2

−1M1YI + �0M2
−1B = 0 , �47�

where

P = „p��1,�1�, . . . ,p��N,�1�, . . . ,p��1,�M�, . . . ,p��N,�M�…
�48�

is the fluid pressure on the plate and

�I� = �E J3

J4 L
� , �49�

with

J3 = − M	�I

0
�, J4 = − ik0����I 0� �50�

�0 is the �N�M�� �N�M� zero matrix�. �I� captures the
fluid-structure interactions �recalling that k0��� is given by
Eq. �25b��.

V. RESULTS

We begin by considering the purely fluid-mechanical as-
pects of the dynamics, by taking the plate to be rigid �Sec.
V A�. In particular, we examine the effectiveness of the
three-dimensional thin-plate-theory formulation �13� and the
two-dimensional character of the flow for narrow plates un-
der certain situations. Elastic plates are then covered in Sec.
V B, where deflections of finite-width elastic plates identical
to the cantilevers used in the AFM experiments of Chon et
al. �25� are computed using both three- and two-dimensional
hydrodynamical loading.

A. Rigid plate

We first illustrate the ability of the various forms of TPT
�3D TPT �13�, 2D TPT �16�, and �at high frequencies� 2D
HFTPT �19a� and �19b�� to correctly estimate the hydrody-
namic loading on a rigid plate by comparing their predictions
with full BEM computations �11� and �14� �Sec. V A 1�.

Having established the reliability of 3D TPT, we then use
it to illustrate the extent to which the hydrodynamic loading
on a narrow plate that is oscillating at high frequencies can
be approximated using the 2D BEM �Sec. V A 2�. Separately
�Sec. V A 3�, we use 3D TPT to illustrate the promotion of
flow two-dimensionality through decreased wall-plate sepa-
ration distances, where lubrication theory �26� is expected to

provide a reliable estimate of the hydrodynamic loading. The
range of validity for these effects are then quantified through
profiles of the overall drag exerted on the plate as functions
of frequency and separation distance �Sec. V A 4�; these
quantitative results will provide valuable reference data for
those wishing to choose an appropriate hydrodynamic model
for a given application.

1. TPT validation

Figure 2 illustrates the ability of 3D TPT �13�, shown with
a wire mesh surface, to approximate accurately the additive
contribution of Stokeslet distributions on the upper and
lower sides of the plate computed using the full 3D
boundary-integral flow formulation �11� �shaded surface� for
both unbounded flow �Figs. 2�a� and 2�b�� and when the
plate is close to the wall ��=0.1, Figs. 2�c� and 2�d��. �Note
that for a rigid plate, symmetry of the flow about �=0.5 and
�=0 means that it is sufficient to plot Stokeslet profiles in
the quadrant 0.5
�
1, −R
�
0.� Since the fluid loading
on the plate is given by this additive contribution �the much
smaller side edges contribute little to the overall loading for
a sufficiently thin plate; see Eq. �12��, TPT represents a use-
ful and convenient simplification. As an indication of the
computational savings offered by the TPT formulation, a full
3D BEM computation with no wall using 20�20 panels for
horizontal surfaces and 20�10 panels for vertical surfaces
runs in about 7200 s on a 1.7 GHz desktop PC, compared
with 72 s for 3D TPT using 20�20 resolution on the same
machine. At the same spatial resolution, when the wall is
present and image Stokeslets are used �which are distributed
over the wall and therefore require additional numerical
quadrature; see Appendix A� the computational time in-
creases to 39 316 s for 3D BEM, compared with 1343 s for
3D TPT. In both cases, the TPT run time is just a few percent
of that required by 3D BEM. The consequence for calculat-
ing fluid-structure interactions is that prohibitively large nu-
merical schemes that rely on the 3D BEM can be reduced to
a manageable size �for conventional desktop PC processing
power� through the use of 3D TPT �as well as the reductions
in the overall size of the system as discussed in Sec. IV�.

As we will shortly identify situations in which the flow
can be considered to be two dimensional through screening
effects, it proves useful to perform an analogous validation
of 2D TPT. Figure 3 shows the two-dimensional Stokeslet
distribution along the plate’s centerline for the cases where
�Figs. 3�a� and 3�b�� ��=100, ��=3, �Figs. 3�c� and 3�d��
��=1, ��=1, and �Figs. 3�e� and 3�f�� ��=100, ��=50 �re-
calling that �=�� /R, �=R��, so for a narrow plate ����,
�����. Figures 3�a�–3�d� clearly demonstrate that the addi-
tive sum of the upper and lower Stokeslet distributions in the
full 2D BEM computations �14� �circular markers� is well
approximated by the predictions of 2D TPT �16� �full line�,
even when the upper �dashed lines� and lower profiles �dot-
ted lines� differ due to the presence of a nearby wall �Figs.
3�c� and 3�d��.

Furthermore, at high frequencies of oscillation the 2D
TPT formulation can be simplified still further. The effective-
ness of 2D HFTPT �19a� and �19b� is demonstrated in Figs.
3�e� and 3�f�, which compares the two-dimensional high-
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frequency thin-plate Stokeslet distribution against that com-
puted using the more general 2D TPT method �16�. Away
from the sides ��= �R, where the Stokeslet distribution and
its derivatives are singular� 2D HFTPT is seen to perform
well in capturing the additive Stokeslet distribution, which is
highly nonuniform due to the sensitivity of inviscid flow to
plate geometry. Under these conditions, the lack of a need for
numerical quadrature in the 2D HFTPT scheme results in a
very fast method for computing the hydrodynamic loading
on the plate.

2. Frequency screening

We now study the 3D TPT �13� profiles obtained in the
absence of the wall. Near �=0 and 1 there are three-
dimensional effects associated with flows around the ends of
the plate. The range of these three-dimensional flows is de-
termined both by the frequency of oscillation and the width
of the plate.

At low frequencies the length scale over which vorticity
diffuses ��−1� is much larger than the length of the plate and
so the three-dimensional flows generated at the ends are felt

across the whole plate. Hence, in this regime, the cross-
sectional Stokeslet profile differs from the 2D BEM predic-
tions �14�, as demonstrated by Figs. 4�a� and 4�b� which
show the midplane Stokeslet distribution f3 for a rigid plate
oscillating at a low frequency ��=0.01�.

When we increase the frequency of oscillation �again in
the absence of a wall� so that 1�� �Figs. 4�c� and 4�d�� the
range over which the vorticity generated by three-
dimensional flows at the ends of the plate can diffuse is
limited to O��−1� distances and so the reach of the three-
dimensional flow is determined by inviscid effects. Since the
inviscid three-dimensional flows around the ends of the plate
scale with its width R, when the plate is narrow �R�1� their
range is limited and the flow over much of the plate is effec-
tively two-dimensional. Under these circumstances a Stokes-
let cross section at �=0.5 is seen to give good agreement
with 2D BEM computations, as illustrated by Figs. 4�c� and
4�d�, which correspond to �=100 and R=0.1. We shall refer
to this effect as frequency screening. Deviations from this
profile occur only at O�R� distances from �=1 �and, by sym-
metry, �=0�.
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FIG. 2. �Color online� Shaded surfaces shows the real �a�, �c� and imaginary �b�, �d� parts, respectively, of the vertical component of the
Stokeslet distribution f3 computed using 3D TPT �13�. The line meshes show the additive contributions of the Stokeslet profiles on the upper
and lower surfaces �g3�SU

+ �g3�SL
, calculated by numerically solving the full 3D boundary-integral equation �11�. Profiles correspond to a plate

with thickness D=10−3 which is oscillating with �=1 when �a�, �b� the wall is absent ���1� and �c�, �d� �=0.1.
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Close to both the sides and ends of the plate we expect an
O�s−�0� singularity in the Stokeslet profile, where �0	0.5
for viscous flow around a flat plate �19�, although the flows
away from these very localized regions differ depending on
whether the edge is a plate side or a plate end �as observed in
Figs. 4�a�–4�d��. The flow near the corners is more complex,
with no simple canonical flow providing the strength of the
singularity, although the profiles suggest that this corner flow
is more singular than along the edges.

3. Wall screening

The presence of a nearby wall promotes two-
dimensionality in the flow, even at low frequencies of oscil-
lation, where we expect frequency screening to be absent.
Figures 4�e� and 4�f� reveal that the discrepancy which exists
at large separation distances between the 3D TPT profile
across �=0.5 and the predictions of 2D BEM ��=100, Fig.

4�e��, disappears once the plate is brought sufficiently close
to the wall ��=0.1, Fig. 4�f��. Under these circumstances we
expect lubrication theory �26� to approximate the fluid load-
ing effectively, and the drag results of Sec. V A 4 will reveal
the extent to which this holds true.

4. Drag

By integrating the vertical component of the Stokeslet dis-
tribution f3 over the plate surface we can obtain the hydro-
dynamic drag that acts on the plate.

Figure 5 plots drag as a function of �, in the absence of a
wall and for several different aspect ratios, to demonstrate
the impact of frequency screening on the drag. Profiles are
computed using 2D �markers� and 3D �full line� TPT as well
as 2D BEM �14� �dashed line�. 2D TPT and BEM predictions
are seen to be always in agreement, thereby further confirm-
ing the validity of the TPT approximation. In contrast, we
see significant divergence between two- and three-
dimensional predictions for drag moduli below �	1 and for
drag phase below �	10, due to the increasing influence of
three-dimensionality via long-ranged viscous effects. When
the frequency of oscillation is increased, the two- and three-
dimensional drags initially converge, as viscous end effects
become shorter ranged. However, finite-width inviscid ef-
fects become stronger as R increases and these ultimately
lead to the small divergence between the two- and three-
dimensional drags at high frequencies. Understandably the
magnitude of this divergence is seen to be a function of plate
width.

The influence of the wall is charted in Figs. 6 and 7,
where the drag amplitudes and phases are plotted against
separation distance � for different oscillation frequencies
and plate aspect ratios. In all cases we observe an agreement
between 3D TPT, 2D BEM, and 3D lubrication theory at
sufficiently small �, due to wall screening effects. In the
narrow plate limit �Fig. 6� we use the asymptotic expression
�34�, thereby validating its effectiveness against 3D TPT and
2D BEM. The validity of 3D lubrication theory is seen to
become questionable once �	1, at which point the predic-
tions of 2D BEM and 3D TPT also begin to differ for a plate
of unit aspect ratio �Fig. 7�.

When the plate is narrow �R=0.1� but the frequency of
oscillation is low ��=0.1; Figs. 6�a� and 6�b��, however, 2D
BEM and 3D TPT are seen to agree relatively well until �
	10, at which point the drag phases begin to diverge. At
moderate oscillation frequencies ��=1, Figs. 6�c� and 6�d��
the agreement is seen to persist even for ��1. This is some-
what surprising as the oscillation frequency should still be
too low for frequency screening effects, which we do expect
to account for the large-separation agreement when �=10
�Figs. 6�c� and 6�d�. We note also that the value of � at
which the drag attains its unbounded limit decreases at
higher values of �, thereby quantifying how the range of the
wall’s influence diminishes with increasing oscillation fre-
quencies.

B. Elastic plate

We now consider nonrigid plates, where deflections gov-
erned by Eq. �5� are coupled to the fluid dynamics, as gov-
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FIG. 3. �Color online� Two-dimensional flow approximations:
real �a�, �c�, �e� and imaginary �b�, �d�, �f� parts of the vertical
component of Stokeslet strength f3� for a thin two-dimensional plate
�D=10−2� when �a�, �b� ��=100, ��=3, �c�, �d� ��=1, ��=1, and
�e�, �f� ��=100, ��=50. Dashed lines in �a�–�f� show the Stokeslet
distribution f3� on the top of the plate while dotted lines indicate
distributions on the plate bottom, both computed using the 2D BEM
�14�. �Note that dashed and dotted lines coincide in �a�, �b�, �e�, and
�f�.� Circular markers denote their additive contribution. Full lines
in �a�–�d� show the predictions of 2D TPT �16�, while in �e�, �f�
they show the predictions of 2D HFTPT �19a� and �19b�.
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erned by Eq. �13� or Eq. �14�. The results presented here will
explore the consequencies of the above fluid-dynamical phe-
nomena on both the driven responses of elastic plates, as
well as their thermal spectra. We examine two plates with the
same material properties as those used in the AFM experi-
ments of Chon et al. �25�, the specifications of which are
listed in Table I alongside the corresponding non-
dimensional quantities 	 and M in both air and water. Note
that the natural frequency �0 is related to the resonant fre-
quency in vacuum �v, as defined by Chon et al. �25�,
through the relationship

�v = c1
2��1 − �p

2��0

�c1	1.875� which was found to take the values �v=2�
�17.52 kHz=110.1�103 rad s−1 for C1 and �v=2�
�70.26 kHz=441.5�103 rad s−1 for C2 �25�. Hence C1 has
�0=32.8�103 rad s−1 and C2 has �0=131.6�103 rad s−1.

We consider these plates in both air and water, in the
absence of a wall, when driven externally �Fig. 8� and ther-
mally �Fig. 9�. We begin by noting by inspection how the
quality factor increases with plate width �in agreement with
earlier studies �26�� but decreases as we move from air �dy-
namic viscosity �=��=1.8�10−5 kg m−1 s−1� to water �dy-

namic viscosity �=��=1�10−3 kg m−1 s−1�, as we would
expect.

In keeping with the main theme of this study, however,
our principal interest lies in the influence of three-
dimensional flows on the elastic response of the plate under
external �Fig. 8� and thermal �Fig. 9� driving. This is ana-
lyzed by computing the plate response subject to hydrody-
namic loading provided by either 3D TPT or 2D BEM
�shown by thick solid lines and circular markers, respec-
tively, in panels �iii� of Figs. 8�a�–8�d� and 9�a�–9�d��. In air
�Figs. 8�a��iii�, 8�b��iii�, 9�a��iii�, and 9�b��iii�� we observe
that the responses computed using 2D BEM hydrodynamics
are virtually indistinguishable from those produced using 3D
TPT. In water �Figs. 8�c��iii�, 8�d��iii�, 9�c��iii�, and
9�d��iii��, however, there are noticeable discrepancies. We
note that the use of 2D BEM hydrodynamics leads to a reso-
nant peak with a slightly lower frequency and marginally
larger amplitude. Although away from the ends of the plate
�i.e., at �=0.5� we observe a good agreement between 3D
TPT and 2D BEM �Figs. 8�c��i�, 8�d��i�, 9�c��i�, and 9�d��i��
longitudinal profiles taken along �=0 �Figs. 8�c��ii�, 8�d��ii�,
9�c��ii�, and 9�d��ii�� illustrate the influence of three-
dimensional end flows. Although the range of these end
flows are comparable in both water and air �compare panels
�a��ii� and �b��ii� with panels �c��ii� and �d��ii� in both Figs. 8
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and 9�, which is perhaps to be expected considering that the
resonant peaks in both air and water correspond to compa-
rable values of �−1 �approximately 0.03 in air and 0.01 in
water�, the larger magnitude of the hydrodynamic loading
experienced by plates immersed in water likely increases the
overall influence of these end regions.

VI. CONCLUSIONS

We have examined the dynamics of a fluid-immersed thin
elastic plate oscillating at high frequencies and small ampli-
tudes, close to a plane wall. Initially we considered a rigid,
non-deformable plate, in order to focus on fluid effects and
to extend earlier two-dimensional theory �12�. The limiting
cases of high oscillation frequencies and small wall separa-
tion distances, where two-dimensional results are recovered,
were therefore of particular interest. The plate was then al-
lowed to deform elastically, enabling us to treat viscous-
damped microscopic plates of the type often encountered in
modern microdevices.

A. Rigid plates

For a plate of arbitrary thickness, the flow has a
boundary-integral representation, which distributes oscilla-
tory image Stokeslets over the entire plate surface. However,
in the limiting case of a thin plate we approximated the flow

using a single distribution of Stokeslets over the plate’s mid-
plane, a formulation we termed thin-plate theory. This 3D
TPT formulation extends the formulations proposed by Tuck
�27� and Green and Sader �4� for the limiting case of a thin
plate, which use a stream-function–pressure representation
for the flow and hence are restricted to consideration of two-
dimensional flows.

The validity of TPT in both two and three dimensions was
verified by direct comparison with BEM predictions �Figs.
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2�a�–2�d� and 3�a�–3�d��, with TPT requiring just 1% of the
computational time demanded by the BEM �at the minimum
spatial resolution for numerical convergence�. Importantly,
when the plate was near to the wall, the additive contribution
from differing profiles on the upper and lower surfaces
�which provide the dominant fluid loading on the plate� com-
puted using BEM was correctly reproduced using TPT.

We were able to verify that at high frequencies the flow
generated by a narrow plate assumed a two-dimensional pro-
file which could be accurately estimated using 2D BEM
�Figs. 4�c� and 4�d��. The proven agreement between 2D
TPT and 2D BEM therefore permits the flow over much of
the three-dimensional plate to be described using just a
single line distribution of Stokeslets in the high-frequency
regime, thereby facilitating further considerable computa-
tional savings.

At especially high frequencies, additional simplifications
to the flow formulation were shown to be possible. In two-
dimensional high-frequency thin-plate theory, viscous effects
were captured by a local coefficient and all nonlocal phe-
nomena were contained within a dipole distribution, which
could be treated analytically, thereby eliminating the need for
numerical quadrature. Figures 3�e� and 3�f� demonstrate the
effectiveness of 2D HFTPT by comparing with profiles ob-
tained using the 2D BEM formulation. Only near the plate
edges did 2D HFTPT differ noticeably from 2D BEM, sug-
gesting the need for higher-order corrections in �. For a
100-�m-sized microdevice component immersed in water,
this high-frequency regime corresponds to frequencies in the
order of 1 MHz, i.e., within the operating range of modern
AFMs.

The tendency of strong wall effects to promote two-
dimensionality in the flow was also confirmed. The presence
of the wall was accounted for in the 3D TPT formulation
through the use of three-dimensional oscillatory image
Stokeslets �see Appendix A�. Figures 4�e� and 4�f� demon-
strated that, at low frequencies of oscillation, where we
would not expect any frequency screening, the flow away
from the end of a narrow plate was largely two dimensional
provided that the wall was sufficiently close.

These two-dimensional limits were quantified in the pro-
files of overall drag on the plate as a function of frequency
�Fig. 5� and separation distance �Fig. 6�. At �=0.1, the 2D
BEM predictions are seen to be reasonably accurate up to
�	10 when the plate was narrow �R=0.1�, but only to �

	1 when the plate was square �R=1�. However, when 1
�� and the plate was narrow, relatively good agreement was
maintained at all values of �. In both cases, lubrication
theory became reliable only at distances less than �	1. In
the absence of a wall, we see significant differences between
3D TPT and 2D BEM in the drag moduli for frequencies less
than �	1 and in the drag phase for frequencies below �
	10. We hope that these hydrodynamic findings will provide
a useful reference source for a variety of different applica-
tions.

B. Elastic plates

Equipped with approximation techniques for the hydrody-
namic loading, we were able to compute the damped elastic
behavior in both air and water of flexible finite-width plates
with material properties that matched those of the AFM can-
tilevers used in the experiments of Chon et al. �2000� �25�.
Our attention focused on the influence of three-dimensional
flows around the ends of the plate, which cannot be captured
by two-dimensional fluid models. In air we observed that the
elastic responses were entirely insensitive to the use of sim-
pler two-dimensional hydrodynamic models in place of more
involved three-dimensional hydrodynamic approximations.
This, of course, validates the use of two-dimensional flow
models when simulating the behavior of AFM cantilevers
operating in air, as exploited by earlier theoretical studies
�3,5�. When operating in water, however, our findings sug-
gest that using two-dimensional fluid models instead of a
fully three-dimensional treatment �that can capture the influ-
ence of hydrodynamic effects at the ends of the plate� intro-
duces some degree of error into the predicted elastic re-
sponses. Although the range of end effects is largely
comparable in both air and water near resonance �since the
larger value of � for a given frequency in water is countered
by a drop in the frequency of the resonant peak�, plates in
water experience a larger overall fluid loading, which may
cause three-dimensional hydrodynamic effects at the ends of
the plate to be more influential than those present in air;
hence a discrepancy that is only observed in water. In fact,
we note that there are other recent reports of three-
dimensional fluid effects �26,28,29�, and it would be of great
interest to see how these predictions match up with experi-
ments specifically designed to explore these issues.

Of course, the practical impact of these findings on de-
vices such as the AFM has to be measured against other

TABLE I. Material properties of the two undoped and uncoated single-crystal silicon AFM cantilevers C1
and C2, as considered in the experiments of Chon et al. �25�. Specifications include length L*, natural radial
frequency �0, resonant frequency in vacuum, �v, and Youngs modulus E. Both C1 and C2 have widths
2R*=28 �m and thicknesses 2D*=2 �m, leading to respective nondimensional thicknesses 2D=0.005 and
2D=0.01. Nondimensional quantities 	 and M in both air ��=1.2 kg m−3, �=1.5�10−5 m2 /s� and water
��=1000 kg m−3, �=10−6 m2 /s� are also shown. In all cases we take the plate to have Poisson ratio �p

=0.3 and density �c=2320 kg m−3.

L*

��m� R

�0 �v E
�GPa�

	
�air�

	
�water�

M
�air�

M
�water��103 rad s−1�

C1 397 0.035 32.8 110.1 170 0.103 85.560 3�10−3 2�10−4

C2 197 0.071 131.6 441.5 165 0.051 42.457 3�10−3 2�10−4
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effects, such as noise in the measurements, renormalization
of the signal during postprocessing of the data, and param-
eter fitting for unknowns such as the cantilever spring con-
stant, all of which may have dominated over this effect in
earlier comparisons between theory and experiment. We
should also note that certain device-specific geometrical fea-
tures neglected here may also be important. For example, the

AFM cantilever is often endowed with a tip at its unclamped
end, as well as a support structure at the other end, which
may alter the precise details of the hydrodynamics, although
the degree to which this may or may not happen will likely
be a function of the precise geometry of the additional fea-
tures. As these features will vary from device to device and
may necessitate full computational fluid dynamics �CFD�
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FIG. 8. Driven responses �iii� of plates C1 �a�, �c� and C2 �b�, �d� immersed in unbounded �a�, �b� air and �c�, �d� water, plotted against
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simulation, they lie beyond the ambitions of the simple heu-
ristic models presented here �but nonetheless warrant future
study in a device-specific context�. Nevertheless, in the quest
for ever more precise measurements and data interpretation,
this study suggests that the choice between two- and three-
dimensional hydrodynamic models should be made with
some care.

Beyond the microdevice context which directly motivates
this study, the thin-plate-theory approximation has the poten-
tial to ease the computational burden across a whole range of
coupled fluid-structure interaction problems in the low-
Reynolds-number regime. Again, the precise details of the
flow may be affected to some extent by the particulars of the
geometry enclosing the plate; what we present here are the
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FIG. 9. Thermal responses �iii� of plates C1 �a�, �c� and C2 �b�, �d� immersed in unbounded �a�, �b� air and �c�, �d� water, plotted against
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general trends which we expect for elastic plates operating in
a host of different microdevices. The ability of a single dis-
tribution of singularities to capture the additive hydrody-
namic loading on a thin body, where a nearby boundary pro-
duces pronounced differences in the stress profiles on the
upper and lower surfaces, is a useful and perhaps surprising
feature of the thin-plate-theory approximation.
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APPENDIX A: THREE-DIMENSIONAL OSCILLATORY
STOKESLET ABOVE A WALL

The three-dimensional oscillatory Stokeslet which satis-
fies no-slip and no-penetration conditions at the plane wall
�x3=0� was computed by Pozrikidis �18� and can be ex-
pressed in the form

S̄ij�x,X;�,�� = Sij�x̂;�� − Sij�x̄;�� + �ij�x,X;�,��,

i, j = 1,2,3, �A1�

where x=xw−X, xw is the image of x in the wall, and Sij is
the free-space oscillatory Stokeslet

Sij�x̂;�� = A�r̂;��
�ij

r̂
+ B�r̂;��

x̂ix̂ j

r̂3 . �A2a�

Here r̂= �x̂� and

A�r̂;�� = 2e−�i�r̂�1 +
1

�i�r̂
−

i

�2r̂2� +
2i

�2r̂2 , �A2b�

B�r̂;�� = − 2e−�i�r̂�1 +
3

�i�r̂
−

3i

�2r̂2� −
6i

�2r̂2 . �A2c�

The wall-interaction tensor �ij involves integrals over the
wall,

2��4�i3�x,X;�,�� = ��i3�k�k − �i�3��1�x,X;�� ,

�A3a�

2��4�ij�x,X;�,��

= � j��i�2�x,X;�� + ��i3�k�k − �i�3��3�x,X;��� ,

�A3b�

where �k�� /�xk for i ,k=1,2 ,3 �sum over k� and j=1,2
with

�1�x,X;�� = �
0




b�a + b���1 − e�a−b�X3�e−ax3

+ �1 − e�b−a�X3�e−bx3�J0�b��db , �A3c�

�2�x,X;�� = �
0




a�a + b��1 − e�b−a�X3�e−bx3J0�b��db ,

�A3d�

�3�x,X;�� = �
0




�a + b��1 − e�a−b�X3�e−ax3J0�b��db ,

�A3e�

where a2=b2+ i�2, �=�x̂1
2+ x̂2

2, and J0 is a Bessel function of
the first kind.

APPENDIX B: TWO-DIMENSIONAL OSCILLATORY
STOKESLET ABOVE A WALL

The two-dimensional oscillatory Stokeslet which satisfies
no slip and no penetration conditions on the wall x3=0 was
computed by Chu and Kim �22� to be

S̄ij� �x,X;��� = Sij� �x̂;��� + �ij�x,X;���, i, j = 1,2,

�B1a�

where x̂=x−X and Sij� is the two-dimensional oscillatory
free-space Stokeslet �30�

Sij� �x̂;��� �
2

i����2��ij

r̂2 −
2x̂ix̂ j

r̂4 � − 2K0��i��r̂���ij −
x̂ix̂ j

r̂2 �
−

2K1��i��r̂�
�i��r̂

��ij −
2x̂ix̂ j

r̂2 � �B1b�

�r̂= �x̂�� and

�ij�x,X;��� = �− 1��i1�i� j�x,X;��� , �B1c�

where

�1�x,X;��� =
1

2���i���2�
0


 1

q − k
��q + k��e−k�x3+X3�

+ e−q�x3+X3�� − 2qe−kx3−qX3

− 2ke−qx3−kX3�cos kx2dk , �B1d�

�2�x,X;��� =
1

2���i���2�
0


 1

q�q − k�
��q + k��qe−k�x3+X3�

+ ke−q�x3+X3�� − 2kq�e−kx3−qX3

+ e−qx3−kX3��sin kx2dk �B1e�

�q=�k2+ i��2, �i=� /�xi� is the wall-interaction term �calcu-
lated using Fourier transforms�.
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